TOPIC: 192004
KNOWLEDGE: K1.01 [3.1/3.2]
QID: P133

Moderator temperature coefficient is defined as the change in core reactivity per degree change in...

A. fuel temperature.
B. fuel clad temperature.
C. reactor vessel temperature.
D. reactor coolant temperature.

ANSWER: D.

TOPIC: 192004
KNOWLEDGE: K1.02 [3.0/3.2]
QID: P650 (B1952)

Which one of the following isotopes is the most significant contributor to resonance capture of fission neutrons in a nuclear reactor core at the beginning of a fuel cycle?

A. U-233
B. U-238
C. Pu-239
D. Pu-240

ANSWER: B.
Factors that affect the probability of resonance absorption of a neutron by a nucleus include...

A. kinetic energy of the nucleus, kinetic energy of the neutron, and excitation energy of the nucleus.

B. kinetic energy of the neutron, excitation energy of the nucleus, and excitation energy of the neutron.

C. excitation energy of the nucleus, excitation energy of the neutron, and kinetic energy of the nucleus.

D. excitation energy of the neutron, kinetic energy of the nucleus, and kinetic energy of the neutron.

ANSWER: A.

Which one of the following isotopes is the most significant contributor to resonance capture of fission neutrons in a nuclear reactor core near the end of a fuel cycle?

A. U-235

B. U-238

C. Pu-239

D. Pu-240

ANSWER: B.
Which one of the following has the smallest microscopic cross section for absorption of a thermal neutron in an operating nuclear reactor?

A. Uranium-235
B. Uranium-238
C. Samarium-149
D. Xenon-135

ANSWER: B.

Under which one of the following conditions is the nuclear reactor most likely to have a positive moderator temperature coefficient?

A. High reactor coolant temperature at the beginning of a fuel cycle.
B. High reactor coolant temperature at the end of a fuel cycle.
C. Low reactor coolant temperature at the beginning of a fuel cycle.
D. Low reactor coolant temperature at the end of a fuel cycle.

ANSWER: C.
A nuclear reactor has operated at steady-state 100 percent power for the past 6 months. Compared to 6 months ago, the current moderator temperature coefficient is...

A. more negative due to control rod withdrawal.

B. less negative due to control rod insertion.

C. more negative due to decreased reactor coolant system (RCS) boron concentration.

D. less negative due to increased RCS boron concentration.

ANSWER: C.

Which one of the following contains the pair of nuclides that are the most significant contributors to the total resonance capture in the core near the end of a fuel cycle?

A. Pu-239 and U-235

B. Pu-239 and Pu-240

C. U-238 and Pu-240

D. U-238 and Pu-239

ANSWER: C.
Which one of the following conditions will cause the moderator temperature coefficient (MTC) to become more negative? (Consider only the direct effect of the indicated change on MTC.)

A. The controlling bank of control rods is inserted 5 percent into the core.

B. Fuel temperature decreases from 1500°F to 1200°F.

C. Reactor coolant boron concentration increases by 20 ppm.

D. Moderator temperature decreases from 500°F to 450°F.

ANSWER: A.

Which one of the following contains the nuclides responsible for most of the resonance capture of fission neutrons in a nuclear reactor core at the beginning of the sixth fuel cycle? (Assume that each refueling replaces one-third of the fuel.)

A. U-235 and Pu-239

B. U-235 and U-238

C. U-238 and Pu-239

D. U-238 and Pu-240

ANSWER: D.
Which one of the following contains two isotopes, both of which are responsible for the negative reactivity inserted when fuel temperature increases near the end of core life?

A. U-235 and Pu-239
B. U-235 and Pu-240
C. U-238 and Pu-239
D. U-238 and Pu-240

ANSWER: D.

As the reactor coolant boron concentration increases, the moderator temperature coefficient becomes less negative. This is because a 1 °F increase in reactor coolant temperature at higher boron concentrations results in a larger increase in the...

A. fast fission factor.
B. thermal utilization factor.
C. total nonleakage probability.
D. resonance escape probability.

ANSWER: B.
In which of the following conditions is the moderator temperature coefficient most negative?

A. Beginning of core life (BOL), high temperature

B. BOL, low temperature

C. End of core life (EOL), high temperature

D. EOL, low temperature

ANSWER: C.

During a nuclear power plant heat-up at end of core life, the moderator temperature coefficient becomes increasingly more negative. This is because...

A. as moderator density decreases, more thermal neutrons are absorbed by the moderator than by the fuel.

B. the change in the thermal utilization factor dominates the change in the resonance escape probability.

C. a greater density change per °F occurs at higher reactor coolant temperatures.

D. the core transitions from an undermoderated condition to an overmoderated condition.

ANSWER: C.
The moderator temperature coefficient will be least negative at a ________ reactor coolant temperature and a ________ reactor coolant boron concentration.

A. high; high
B. high; low
C. low; high
D. low; low

ANSWER: C.

A nuclear reactor is operating at full power following a refueling outage. In comparison to the current moderator temperature coefficient (MTC), the MTC just prior to the refueling was...

A. less negative at all coolant temperatures.
B. more negative at all coolant temperatures.
C. less negative below approximately 350°F coolant temperature and more negative above approximately 350°F coolant temperature.
D. more negative below approximately 350°F coolant temperature and less negative above approximately 350°F coolant temperature.

ANSWER: B.
During a reactor coolant system cooldown, positive reactivity is added to the core if the moderator temperature coefficient is negative. This is partially due to...

A. a decrease in the thermal utilization factor.
B. an increase in the thermal utilization factor.
C. a decrease in the resonance escape probability.
D. an increase in the resonance escape probability.

ANSWER: D.

As the core ages, the moderator temperature coefficient becomes more negative. This is primarily due to...

A. fission product poison buildup in the fuel.
B. decreasing fuel centerline temperature.
C. decreasing control rod worth.
D. decreasing reactor coolant system boron concentration.

ANSWER: D.
TOPIC: 192004
KNOWLEDGE: K1.06 [3.1/3.1]
QID: P1450

The moderator temperature coefficient will be most negative at a __________ reactor coolant temperature and a __________ reactor coolant boron concentration.

A. low; low
B. high; low
C. low; high
D. high; high

ANSWER: B.

TOPIC: 192004
KNOWLEDGE: K1.06 [3.1/3.1]
QID: P1752

Which one of the following describes the net reactivity effect of a moderator temperature decrease in an undermoderated nuclear reactor core?

A. Negative reactivity will be added because more neutrons will be absorbed at resonance energies while slowing down.

B. Negative reactivity will be added because more neutrons will be captured by the moderator.

C. Positive reactivity will be added because fewer neutrons will be absorbed at resonance energies while slowing down.

D. Positive reactivity will be added because fewer neutrons will be captured by the moderator.

ANSWER: C.
Which one of the following describes why the moderator temperature coefficient is more negative near the end of core life (EOL) compared to the beginning of core life (BOL)?

A. Increased nucleate boiling near the EOL amplifies the negative reactivity added by a 1°F moderator temperature increase.

B. Increased control rod insertion near the EOL amplifies the negative reactivity added by a 1°F moderator temperature increase.

C. Decreased fuel temperature near the EOL results in reduced resonance neutron capture for a 1°F increase in moderator temperature.

D. Decreased coolant boron concentration near the EOL results in fewer boron atoms leaving the core for a 1°F moderator temperature increase.

ANSWER: D.

Which one of the following describes the net reactivity effect of a moderator temperature decrease in an overmoderated reactor core?

A. Positive reactivity will be added because fewer neutrons will be captured by the moderator.

B. Positive reactivity will be added because fewer neutrons will be absorbed at resonance energies while slowing down.

C. Negative reactivity will be added because more neutrons will be captured by the moderator.

D. Negative reactivity will be added because more neutrons will be absorbed at resonance energies while slowing down.

ANSWER: C.
A nuclear reactor is operating at full power following a refueling outage. Compared to the moderator temperature coefficient (MTC) just prior to the refueling, the current MTC is...

A. less negative at all coolant temperatures.

B. more negative at all coolant temperatures.

C. less negative below approximately 350°F coolant temperature and more negative above approximately 350°F coolant temperature.

D. more negative below approximately 350°F coolant temperature and less negative above approximately 350°F coolant temperature.

ANSWER: A.

Which one of the following describes the net reactivity effect of a moderator temperature increase in an overmoderated nuclear reactor core?

A. Negative reactivity will be added because more neutrons will be absorbed at resonance energies while slowing down.

B. Negative reactivity will be added because more neutrons will be captured by the moderator.

C. Positive reactivity will be added because fewer neutrons will be absorbed at resonance energies while slowing down.

D. Positive reactivity will be added because fewer neutrons will be captured by the moderator.

ANSWER: D.
How does the addition of boric acid to the reactor coolant affect the moderator temperature coefficient in an undermoderated nuclear reactor core?

A. The initially negative MTC becomes more negative.
B. The initially negative MTC becomes less negative.
C. The initially positive MTC becomes more positive.
D. The initially positive MTC becomes less positive.

ANSWER: B.

As compared to the moderator temperature coefficient (MTC) of reactivity near the beginning of core life, the MTC near the end of core life is: (Assume 100 percent power for all cases.)

A. more negative because as U-235 depletes, more fission neutrons are able to escape resonance capture.
B. less negative because as U-238 depletes, more fission neutrons are able to escape resonance capture.
C. more negative because as reactor coolant boron concentration decreases, the thermal utilization of fission neutrons increases.
D. less negative because as control rods are withdrawn from the core, the thermal utilization of fission neutrons increases.

ANSWER: C.
Which one of the following describes the overall core reactivity effect of a moderator temperature increase in an undermoderated nuclear reactor core?

A. Negative reactivity will be added because more neutrons will be absorbed by U-238 at resonance energies while slowing down.

B. Negative reactivity will be added because more neutrons will be captured by the moderator while slowing down.

C. Positive reactivity will be added because fewer neutrons will be absorbed by U-238 at resonance energies while slowing down.

D. Positive reactivity will be added because fewer neutrons will be captured by the moderator while slowing down.

ANSWER: A.

When compared to the beginning of a fuel cycle, the moderator temperature coefficient at 100 percent power near the end of a fuel cycle is...

A. more negative, because fewer boron-10 nuclei are removed from the core for a given moderator temperature increase.

B. less negative, because more boron-10 nuclei are removed from the core for a given moderator temperature increase.

C. more negative, because a smaller fraction of the neutron flux will leak out of the core following a given moderator temperature increase.

D. less negative, because a larger fraction of the neutron flux will leak out of the core following a given moderator temperature increase.

ANSWER: A.
Why does the fuel temperature (Doppler) coefficient become less negative at higher fuel temperatures?

A. As reactor power increases, the rate of increase in the fuel temperature diminishes.
B. Neutrons penetrate deeper into the fuel, resulting in an increase in the fast fission factor.
C. The amount of self-shielding increases, resulting in less neutron absorption by the inner fuel.
D. The amount of Doppler broadening per degree change in fuel temperature diminishes.

ANSWER: D.

Which one of the following will cause the Doppler power coefficient to become more negative?

A. Increased clad creep
B. Increased pellet swell
C. Lower power level
D. Higher reactor coolant boron concentration

ANSWER: C.
As core age increases, for the same power level the fuel temperature coefficient of reactivity becomes _____________ negative because average fuel temperature ______________.

A. more; decreases
B. more; increases
C. less; decreases
D. less; increases

ANSWER: A.

Which one of the following pairs of isotopes is responsible for the negative reactivity associated with a fuel temperature increase near the end of core life?

A. U-235 and Pu-239
B. U-235 and Pu-240
C. U-238 and Pu-239
D. U-238 and Pu-240

ANSWER: D.
A nuclear power plant is operating at 70 percent power. Which one of the following will result in a less negative fuel temperature coefficient? (Consider only the direct effect of the change in each listed parameter.)

A. Increase in Pu-240 inventory in the core.
B. Increase in moderator temperature.
C. Increase in fuel temperature.
D. Increase in void fraction.

ANSWER: C.

Compared to operation at a low power level, the fuel temperature coefficient of reactivity at a high power level is ______________ negative due to ______________.

A. less; improved pellet-to-clad heat transfer
B. more; buildup of fission product poisons
C. less; higher fuel temperature
D. more; increased neutron flux

ANSWER: C.
Refer to the drawing of microscopic cross section for absorption versus neutron energy for a resonance peak in U-238 (see figure below).

If fuel temperature increases, the area under the curve will _________ and negative reactivity will be added to the core because ___________.

A. increase; neutrons of a wider range of energies will be absorbed by U-238
B. increase; more neutrons will be absorbed by U-238 at the resonance neutron energy
C. remain the same; neutrons of a wider range of energies will be absorbed by U-238
D. remain the same; more neutrons will be absorbed by U-238 at the resonance neutron energy

ANSWER: C.
TOPIC: 192004
KNOWLEDGE: K1.07 [2.9/2.9]
QID: P2451

Which one of the following describes how the magnitude of the fuel temperature coefficient of reactivity is affected over core life?

A. It remains essentially constant over core life.
B. It becomes more negative due to the buildup of Pu-240.
C. It becomes less negative due to the decrease in RCS boron concentration.
D. It becomes more negative initially due to buildup of fissions product poisons, then less negative due to fuel depletion.

ANSWER: B.

TOPIC: 192004
KNOWLEDGE: K1.07 [2.9/2.9]
QID: P2651 (B2553)

The fuel temperature (Doppler) coefficient of reactivity is more negative at the __________ of a fuel cycle because ________________. (Assume the same initial fuel temperature throughout the fuel cycle.)

A. end; more Pu-240 is in the core
B. end; more fission products are in the core
C. beginning; more U-238 is in the core
D. beginning; less fission products are in the core

ANSWER: A.
Refer to the drawing of microscopic cross section for absorption versus neutron energy for a 6.7 electron volt (ev) resonance peak in U-238 for a nuclear reactor operating at 50 percent power (see figure below).

If fuel temperature decreases by 50°F, the area under the curve will __________ and positive reactivity will be added to the core because ____________.

A. decrease; fewer neutrons will be absorbed by U-238 overall
B. decrease; fewer 6.7 ev neutrons will be absorbed by U-238 at the resonance energy
C. remain the same; fewer neutrons will be absorbed by U-238 overall
D. remain the same; fewer 6.7 ev neutrons will be absorbed by U-238 at the resonance energy

ANSWER: C.
Refer to the drawing of microscopic cross section for absorption versus neutron energy for a resonance peak in U-238 in a nuclear reactor operating at 80 percent power (see figure below).

If reactor power is increased to 100 percent, the height of the curve will ________ and the area under the curve will ________.

A. increase; increase
B. increase; remain the same
C. decrease; decrease
D. decrease; remain the same

ANSWER: D.
Refer to the drawing of a curve showing the neutron absorption characteristics of a typical U-238 nucleus at a resonance neutron energy (see figure below). The associated nuclear reactor is currently operating at steady-state 80 percent power.

During a subsequent reactor power decrease to 70 percent, the curve will become _______; and the percentage of the core neutron population lost to resonance capture by U-238 will ________.

A. taller and more narrow; decrease
B. taller and more narrow; increase
C. shorter and broader; decrease
D. shorter and broader; increase

ANSWER: A.
Refer to the drawing of microscopic cross section for absorption versus neutron energy for a resonance peak in U-238 in a nuclear reactor operating at 80 percent power (see figure below).

If reactor power is decreased to 60 percent, the height of the curve will _________ and the area under the curve will _________.

A. increase; increase
B. increase; remain the same
C. decrease; decrease
D. decrease; remain the same

ANSWER: B.
If the average temperature of a fuel pellet decreases by 50°F, the microscopic cross-section for absorption of neutrons at a resonance energy of U-238 will ___________; and the microscopic cross-sections for absorption of neutrons at energies that are slightly higher or lower than a U-238 resonance energy will ___________.

A. increase; increase

B. increase; decrease

C. decrease; increase

D. decrease; decrease

ANSWER: B.

If the average temperature of a fuel pellet increases by 50°F, the microscopic cross-section for absorption of neutrons at a resonance energy of U-238 will ___________; and the microscopic cross-sections for absorption of neutrons at energies that are slightly higher or lower than a U-238 resonance energy will ___________.

A. increase; increase

B. increase; decrease

C. decrease; increase

D. decrease; decrease

ANSWER: C.
Which one of the following 10 percent power level changes produces the largest amount of negative reactivity from the fuel temperature coefficient? (Assume that each power level change produces the same increase/decrease in fuel temperature.)

A. 30 percent to 40 percent.
B. 30 percent to 20 percent.
C. 80 percent to 90 percent.
D. 80 percent to 70 percent.

ANSWER: A.

Which one of the following groups contain parameters that, if varied, will each have a direct effect on the power coefficient?

A. Control rod position, reactor power, moderator voids
B. Moderator temperature, RCS pressure, Xenon level
C. Fuel temperature, xenon level, control rod position
D. Moderator voids, fuel temperature, moderator temperature

ANSWER: D.
Which one of the following adds the most positive reactivity following a reactor trip/scram from full power near the beginning of core life? (Assume reactor coolant system parameters stabilize at their normal post-trip values.)

A. Void coefficient
B. Pressure coefficient
C. Fuel temperature coefficient
D. Moderator temperature coefficient

ANSWER: C.

A nuclear power plant is initially operating at 50 percent power. Which one of the following contains only parameters that, if varied, will each directly change the magnitude of the power defect?

A. Control rod position, reactor power, and moderator voids
B. Moderator voids, fuel temperature, and moderator temperature
C. Fuel temperature, xenon concentration, and control rod position
D. Moderator temperature, reactor coolant pressure, and xenon concentration

ANSWER: B.
A nuclear reactor is exactly critical at the point of adding heat during a xenon-free reactor startup near the beginning of core life. Reactor power is ramped to 50 percent over the next 4 hours.

During the power increase, most of the positive reactivity added by the operator is necessary to overcome the negative reactivity associated with the...

A. buildup of core Xe-135.
B. increased fuel temperature.
C. burnout of burnable poisons.
D. increased reactor coolant temperature.

ANSWER: B.

A nuclear reactor has been operating at steady state 50 percent power for one month following a refueling outage. Reactor power is ramped to 100 percent over the next 2 hours.

During the power increase, most of the positive reactivity added by the operator is necessary to overcome the negative reactivity associated with the...

A. increased reactor coolant temperature.
B. buildup of core Xe-135.
C. burnout of burnable poisons.
D. increased fuel temperature.

ANSWER: D.
As reactor coolant boron concentration is reduced, the differential boron reactivity worth (\(\Delta K/K\) per ppm) becomes...

A. less negative due to the increased number of water molecules in the core.
B. less negative due to the decreased number of boron molecules in the core.
C. more negative due to the increased number of water molecules in the core.
D. more negative due to the decreased number of boron molecules in the core.

ANSWER: D.

With higher concentrations of boron in the reactor coolant, the core neutron flux distribution shifts to ____________ energies where the absorption cross-section of boron is ____________.

A. higher; lower
B. higher; higher
C. lower; lower
D. lower; higher

ANSWER: A.
TOPIC: 192004
KNOWLEDGE: K1.10 [2.9/2.9]
QID: P1152

Differential boron reactivity worth will become _______ negative as moderator temperature increases because, at higher moderator temperatures, a 1 ppm increase in reactor coolant system boron concentration will add _______ boron atoms to the core.

A. more; fewer
B. more; more
C. less; fewer
D. less; more

ANSWER: C.

TOPIC: 192004
KNOWLEDGE: K1.10 [2.9/2.9]
QID: P1252

Differential boron worth (ΔK/K/ppm) becomes more negative as...

A. burnable poisons deplete.
B. boron concentration increases.
C. moderator temperature increases.
D. fission product poison concentration increases.

ANSWER: A.
The following are the initial conditions for a nuclear power plant:

- Reactor power is 50 percent.
- Average reactor coolant temperature is 570°F.

After a power increase, current plant conditions are as follows:

- Reactor power is 80 percent.
- Average reactor coolant temperature is 582°F.

Assume that the initial and current reactor coolant boron concentrations are the same. Which one of the following describes the current differential boron worth (DBW) in comparison to the initial DBW?

A. The current DBW is more negative because a 1°F increase in reactor coolant temperature will remove more boron-10 atoms from the core.

B. The current DBW is more negative because a 1 ppm increase in reactor coolant boron concentration will add more boron-10 atoms to the core.

C. The current DBW is less negative because a 1°F increase in reactor coolant temperature will remove fewer boron-10 atoms from the core.

D. The current DBW is less negative because a 1 ppm increase in reactor coolant boron concentration will add fewer boron-10 atoms to the core.

ANSWER: D.
TOPIC: 192004
KNOWLEDGE: K1.11 [2.9/3.1]
QID: P351

The amount of boric acid required to increase the reactor coolant boron concentration by 50 ppm near the beginning of core life (1,200 ppm) is approximately ____________ as the amount of boric acid required to increase boron concentration by 50 ppm near the end of core life (100 ppm).

A. the same
B. four times as large
C. eight times as large
D. twelve times as large

ANSWER: A.

TOPIC: 192004
KNOWLEDGE: K1.11 [2.9/3.1]
QID: P1050

The amount of pure water required to decrease the reactor coolant boron concentration by 20 ppm near the end of core life (100 ppm) is approximately ____________ the amount of pure water required to decrease reactor coolant boron concentration by 20 ppm near the beginning of core life (1,000 ppm).

A. one-tenth
B. the same as
C. 10 times
D. 100 times

ANSWER: C.
A reactivity coefficient measures a/an __________ change in reactivity while a reactivity defect measures a __________ change in reactivity due to a change in the measured parameter.

A. integrated; total

B. integrated; differential

C. unit; total

D. unit; differential

ANSWER: C.

Given the following initial parameters:

Initial reactor coolant system boron concentration = 600 ppm
Moderator temperature coefficient = -0.015 %ΔK/K per °F
Differential boron worth = -0.010 %ΔK/K per ppm

Which one of the following is the final reactor coolant boron concentration required to decrease average coolant temperature by 4 °F. (Assume no change in control rod position or reactor/turbine power).

A. 606 ppm

B. 603 ppm

C. 597 ppm

D. 594 ppm

ANSWER: A.
Given the following initial parameters:

- Initial reactor coolant boron concentration = 500 ppm
- Moderator temperature coefficient = -0.012 %ΔK/K per °F
- Differential boron worth = -0.008 %ΔK/K per ppm

Which one of the following is the final reactor coolant boron concentration required to increase average coolant temperature by 6°F. (Assume no change in control rod position or reactor/turbine power.)

A. 491 ppm
B. 496 ppm
C. 504 ppm
D. 509 ppm

ANSWER: A.
Given the following initial parameters:

- Total power coefficient = -0.016 %\(\Delta K/K/\%\)
- Boron worth = -0.010 %\(\Delta K/K/ppm\)
- Control rod worth = -0.030 %\(\Delta K/K/inch\)
- Initial reactor coolant system (RCS) boron concentration = 500 ppm

Which one of the following is the final RCS boron concentration required to support increasing plant power from 30 percent to 80 percent by boration/dilution with 10 inches of outward control rod motion. (Assume no change in fission product poison reactivity.)

A. 390 ppm
B. 420 ppm
C. 450 ppm
D. 470 ppm

ANSWER: C.
A nuclear power plant is operating at steady-state 100 percent power. Given the following initial parameters, select the final reactor coolant boron concentration required to decrease average coolant temperature by 6°F. (Assume no change in control rod position or reactor/turbine power.)

- Initial boron concentration = 500 ppm
- Moderator temperature coefficient = -0.012 $\% \Delta K/K$ per $^\circ$F
- Differential boron worth = -0.008 $\% \Delta K/K$ per ppm

A. 509 ppm
B. 504 ppm
C. 496 ppm
D. 491 ppm

ANSWER: A.
Given the following initial parameters:

- Total power coefficient = -0.020 \%/\%K\%
- Boron worth = -0.010 \%/\%/ppm
- Control rod worth = -0.025 \%/\%/inch
- Initial reactor coolant system (RCS) boron concentration = 500 ppm

Which one of the following is the final RCS boron concentration required to support increasing plant power from 30 percent to 80 percent by boration/dilution with 10 inches of outward control rod motion? (Assume no change in fission product poison reactivity.)

A. 425 ppm
B. 450 ppm
C. 550 ppm
D. 575 ppm

ANSWER: A.
Given the following initial parameters:

- Total power coefficient $= -0.020 \% \Delta K/K/\%$
- Boron worth $= -0.010 \% \Delta K/K/ppm$
- Control rod worth $= -0.025 \% \Delta K/K/inch$
- Initial reactor coolant system (RCS) boron concentration $= 500 \text{ ppm}$

Which one of the following is the final RCS boron concentration required to support decreasing plant power from 80 percent to 30 percent by boration/dilution with 10 inches of inward control rod motion? (Assume no change in fission product poison reactivity.)

A. 425 ppm
B. 475 ppm
C. 525 ppm
D. 575 ppm

ANSWER: D.
Given the following initial parameters:

- Total power coefficient = -0.020 %ΔK/K/%
- Boron worth = -0.010 %ΔK/K/ppm
- Control rod worth = -0.025 %ΔK/K/inch
- Initial reactor coolant system (RCS) boron concentration = 600 ppm

Which one of the following is the final RCS boron concentration required to support increasing plant power from 40 percent to 80 percent with 40 inches of outward control rod motion? (Ignore any change in fission product poison reactivity.)

A. 420 ppm
B. 580 ppm
C. 620 ppm
D. 780 ppm

ANSWER: C.
Given the following initial parameters:

- Reactor power = 100%
- Total power coefficient = -0.020 %ΔK/K/%
- Boron worth = -0.010 %ΔK/K/ppm
- Control rod worth = -0.025 %ΔK/K/inch
- Initial reactor coolant system (RCS) boron concentration = 500 ppm

Which one of the following is the final RCS boron concentration required to support decreasing plant power to 30 percent by boration/dilution with 20 inches of inward control rod motion? (Assume no change in fission product poison reactivity.)

A. 410 ppm
B. 425 ppm
C. 575 ppm
D. 590 ppm

ANSWER: D.
Given the following initial parameters:

- Total power coefficient: $-0.020 \% \Delta K/K/\%$
- Boron worth: $-0.010 \% \Delta K/K/ppm$
- Control rod worth: $-0.020 \% \Delta K/K/inch$
- Initial reactor coolant system (RCS) boron concentration: 600 ppm

Which one of the following is the final RCS boron concentration required to support increasing plant power from 20 percent to 50 percent with 10 inches of control rod withdrawal? (Ignore any change in fission product poison reactivity.)

A. 520 ppm
B. 560 ppm
C. 640 ppm
D. 680 ppm

ANSWER: B.

During power operation, while changing power level, core reactivity is affected most quickly by...

A. boron concentration adjustments.
B. power defect (deficit).
C. xenon transients.
D. fuel depletion.

ANSWER: B.
Which one of the following statements concerning the power defect is correct?

A. The power defect necessitates the use of a ramped Tave program to maintain an adequate reactor coolant system subcooling margin.

B. The power defect increases the rod height requirements necessary to maintain the desired shutdown margin following a reactor trip.

C. The power defect is more negative near the beginning of core life because of the higher boron concentration.

D. The power defect causes control rods to be withdrawn as reactor power is decreased.

ANSWER: B.

Ignoring the effects of changes in fission product poisons, which one of the following power changes requires the greatest amount of positive reactivity addition?

A. 3% power to 5% power

B. 5% power to 15% power

C. 15% power to 30% power

D. 30% power to 60% power

ANSWER: D.
TOPIC: 192004
KNOWLEDGE: K1.13 [2.9/2.9]
QID: P2169 (B2669)

Ignoring the effects of changes in fission product poisons, which one of the following power changes requires the smallest amount of positive reactivity addition?

A. 2% power to 5% power
B. 5% power to 15% power
C. 15% power to 30% power
D. 30% power to 50% power

ANSWER: A.

TOPIC: 192004
KNOWLEDGE: K1.13 [2.9/2.9]
QID: P2851 (B2470)

Ignoring the effects of changes in fission product poisons, which one of the following power changes requires the greatest amount of positive reactivity addition?

A. 3% power to 10% power
B. 10% power to 25% power
C. 25% power to 60% power
D. 60% power to 100% power

ANSWER: D.
TOPIC: 192004
KNOWLEDGE: K1.13 [2.9/2.9]
QID: P2953 (B5034)

Ignoring the effects of changes in fission product poisons, which one of the following reactor power changes requires the greatest amount of positive reactivity addition?

A. 3% power to 10% power
B. 10% power to 25% power
C. 25% power to 65% power
D. 65% power to 100% power

ANSWER: C.

TOPIC: 192004
KNOWLEDGE: K1.13 [2.9/2.9]
QID: P3050 (B3051)

A nuclear reactor startup is in progress with the reactor at normal operating temperature and pressure. With reactor power stable at the point of adding heat, a control rod malfunction causes an inadvertent rod withdrawal that results in adding 0.3 %\(\Delta K/K\) reactivity.

Given:

• All control rod motion has been stopped.
• No automatic system or operator actions occur to inhibit the power increase.
• Power coefficient equals -0.04 %\(\Delta K/K\) per % power.
• Core effective delayed neutron fraction equals 0.006.

What is the approximate power level increase required to offset the reactivity added by the inadvertent control rod withdrawal? (Ignore any reactivity effects from changes in fission product poisons.)

A. 3.0 percent
B. 5.0 percent
C. 6.7 percent
D. 7.5 percent

ANSWER: D.
Ignoring the effects of changes in fission product poisons, which one of the following power changes requires the smallest amount of positive reactivity addition?

A. 3% power to 10% power
B. 10% power to 15% power
C. 15% power to 30% power
D. 30% power to 40% power

ANSWER: B.

A nuclear reactor startup is in progress with the reactor at normal operating temperature and pressure. With reactor power stable at the point of adding heat, a control rod malfunction causes an inadvertent rod withdrawal that results in adding 0.2 %ΔK/K reactivity.

Given:

• All control rod motion has been stopped.
• No automatic system or operator actions occur to inhibit the power increase.
• Power coefficient equals -0.04 %ΔK/K per % power.
• Core effective delayed neutron fraction equals 0.006.

What is the approximate reactor power level increase required to offset the reactivity added by the inadvertent control rod withdrawal? (Ignore any reactivity effects from changes in fission product poisons.)

A. 3.3 percent
B. 5.0 percent
C. 6.7 percent
D. 7.5 percent

ANSWER: B.
A nuclear reactor startup is in progress with the reactor at normal operating temperature and pressure. With reactor power stable at the point of adding heat, a control rod malfunction caused a rod withdrawal that increased reactivity by 0.14 %ΔK/K.

Given:

- All control rod motion has stopped.
- No automatic system or operator actions occur to inhibit the power increase.
- Power coefficient equals -0.028 %ΔK/K per % power.
- Core effective delayed neutron fraction equals 0.006.

Assuming the reactor does not trip, what is the approximate reactor power level increase required to offset the reactivity added by the control rod withdrawal? (Ignore any reactivity effects from changes in fission product poisons.)

A. 2.0 percent
B. 5.0 percent
C. 20 percent
D. 50 percent

ANSWER: B.